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Abstract

In the present work, we consider the general problem of

knowledge acquisition under uncertainty. Slmply stated, the problem

becomes: how can we capture the knowledge of an expert when the

expert is unable to clearly formulate how he or she arrives at a

decision?

A commonly used method is to learn by examples. We observe

how the expert solves specific cases and from this infer some rules

by which the decision may have been made. Unique to this work is

the fuzzy set representation of the conditions or attributes upon

which the decision maker may base his fuzzy set decision. From our

examples, we infer certain and possible rules containing fuzzy

terms.

It should be stressed that the procedure does not determine

the quallty of the decision, but how closely the expert follows the

conditions under consideration in making his decision. We offer two

examples pertaining to the possible decision to close a customer

service centers by a public utility company. In the first example,

the decision maker dOes not follow too closely the conditions. In

the second example, the conditions are much more relevant to the

declmion of the expert.
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I. IntEoduotion

Much effort has recently been devoted to studying the

problem of knowledge acquisition under uncertainty.

Uncertainty arises in many different situations. It may be

caused by the ambiguity in the terms used to describe a

specific situation. It may also be caused by skepticism of

rules used to describe a course of action or by missing and/or

erroneous data. [For a small sample of work done in the area,

the reader is referred to (Arciszewski & Ziarko 1986),

(Bobrow, et.al. 1986), (Wiederhold, et. al. 1986), (Yager

1984), and (Zadeh 1983).]

To deal with uncertainty, techniques other than classical

logic need to be developed. Although, statistics may be the

best tool available for handling likelihood, it often requires

probabilities to be estimated; sometimes without even the

recourse to relative frequencies. Estimates are then

typically very inaccurate. [We refer the reader to Mamdani,

et. al. (1985) for a study of the limitations of traditional

statistical methods.]

Recognizing the limitations of statistics in dealing

with uncertalnty, the Dempster-Shafertheoryof evidence which

gives useful measures for the evaluation of subjective

certainty has gained in popularity. [ For a sample of works

using the Dempster-Shafer theory see (sharer 1976), (de

Korvin, et. al. 1990), (Kleyle & de Korvin 1989), (Strat

1990), and (Yager).] Fuzzy set theory is another tool used to
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deal with uncertainty where ambiguous terms are present.

[Articles in (Zadeh 1979, 1981 & 1983) illustrate the numerous

works carried out in fuzzy sets.] Other methods include rough

sets, the theory of endorsements and nonmonotonic logic. [The

work on rough sets is illustrated in (Fibak, et. al. 1986),

(Grzymala-Busse 1988), and (Mrozek 1985 & 1987). Also, see

(Mrozek 1985) and (Pawlak 1982) for the application of rough

sets to medicine and (Arclszewskl & Ziarko 1986) and (Pawlak

1981) for applications to industry.] Our work builds on these

alternatives to statistics, allowing us to infer knowledge

from the uncertainty associated with ambiguous (i.e. fuzzy)

terms.

2. Development o£ the Model

A traditional way to acquire knowledge is based on

learning from examples. An effective tool to infer knowledge

from examples is rough sets. In Grzymala-Busse's work (1988),

the values of attributes are crisp values as in the diagnosis

of a particular condition. Possible and certain rules are

extracted and a measure of how much the values of attributes

determine the diagnosis is established. However, in many

situations, the values of the attributes fail to be crimp.

The typical cases presented are not .textbook cases" add the

values of attributes require some Judgment for their

determination. The same difficulties reside inthe diagnosis.



The diagnosis is often not of "pure type". It is a mixture of

several "pure types". Thus, a patient might have a diagnosis

of the type .3/_ + .6/_ meaning that the physician believes

the (fuzzy) symptoms reflect disease D, with strength .3 and

disease D| with strength .6.

The main purpose of the present work is to study the

general situation described above where the decision maker is

faced with uncertain (i.e. fuzzy) conditions and makes a fuzzy

decision which might be strongly or weakly based on these

conditions. In this situation, fuzzy rules will be extracted.

Fuzzy rules are naturally present in descriptions, crisp

rules are the exceptions. Also, fewer fuzzy rules are needed

than crisp ones to build an expert system.

In the first part of this work, we develop a methodology

to extract such rules from fuzzy conditions and fuzzy

decisions. In fact, we will extract two sets of rules;

certain and possible rules as well as a measure of how much we

believe these rules. A related problem is to define the

decision in terms of the conditions. We give the basic

notations and results necessary to understand the rest of the

paper. [Most of these concepts are discussed in (Grzymala-

Busse 1988), and (Pawlak 1981, 1982 & 1985) as they relate to

crisp sets.]

Baslo Notations aria ¢onoepts

Let U be the universe. Let R be an equivalence relation

on U. Let X be any subset of U. If Ix] denotes the equlvalence
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class of x relative to R, then we define

R(X) - {x • U/Ix] c X} and

R(X) = (x • U/Ix) n X

R(X) is called the lower approximation of X and R (X) is

called an upper approximation of X. Then R(X) c X c R(X). If

R(X) = X = R(X), then X is called definable.

An information system is a quadruple (U,Q,V,T) where U is

the universe and Q is a subset of C u D where C n D - e. The

set C is called the set of conditions; D is called the set of

decisions. We assume here that Q = C. The set V stands for

value and • is a function from UxQ into V where •(u,q) denotes

the value of attribute q for element u. The set C induces

naturally an equivalence on U by partitioning U into sets over

which all attributes are constant. The set X is called roughly

C-definable if

R(X) _ e and R(X) _ U.

It will be called internally C-undeflnable if

R(X) - • and R(X) ,* U.

It will be called externally C-undefinable if

E(x) s a.d R(X) = U.

Unfortunately, uncertainty is all too often present in

the conditions and the decisions. The conditions and the

decisions fail to partition the universe into well defined

classes and some overlap is present. For example, there are

no sharp boundaries between conditions defined to represent

large and those defined to represent small objects. The best
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we can hope is that condition definitions of large and small

"sort of partition the universe" by not overlapping "too

much". In the next section we will deal with this issue of

transferring rough set theory to fuzzy sets.

As background for this transformation, we recall that a

fuzzy subset A of U is defined by a characteristic function

#,:U _ [0,i]. The notation Z al/x I (0 _ u i _I) denotes a

fuzzy subset whose characteristic function at x i is u i.

Finally, we recall that if A and B are fuzzy subsets, A n B,

A u B, and -A are defined by Min { _A(x),# |(x) },

Max (#,(x),#u(x)}, and 1 - #A(x), respectively. The implication

A * B is defined by -A u B. The corresponding characteristic

function is Max {i - A(x), B(x)}.

Rough Sot Notation Applied to Fu|sy Sets

We now define two functions of pairs of fuzzy sets that

will be used to determine rules for closing a utility

company's customer service centers (CSCs). We define.

I(AcB)=Inf Max {i - A(x), B(x)} (i)
X

J(A#B)-Max Min {A(x), B(x)}. (2)

Here A and B denote fuzzy subsets of the same universe. The

function I(A c B) measures the degree to which A is Included

in B and J(A # B) measures the degree to which A intersects B.

Indeed, if A and B are crisp sets it is easy to establish that

I(A c B) - 1 if and only if A c B; otherwise it is zero. Also,

in the case of crisp sets J(A # B) - 1 if and only if

A n B _ e; otherwise it is zero. It is also clear that I and
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J can be expressed as

I(AcB)=Inf (A _ B)
X

J(A#B)=Max (A _ B ).
X

In addition, the following relation holds:

I(AcB) = 1 - J(A#_B).

Indeed, the rlght-hand side of (5) is

inf (1 -Min (A(x), 1 - B(x) ) -
X

inf Max { 1 - A(x), 1 - ( 1- S(x) ) ) =
X

inf Max ( I - A(x), B(x) 1.
X

(3)

(4)

(s)

This last expression is the left-hand side of (S}.

The goal is to define the fuzzy terms involved in the

decision as a function of the terms used in the conditions.

This is accompllshed as a function of how much the decision

follows the conditions. Let (BI) be a finite family of fuzzy

sets. Let A be a fuzzy set. By a lower approximation of A

through {B!}, we mean the fuzzy set

R (A) - u I ( B! = A ) B! (6)
i

The decision making process may be slmplified by dimregarding

all sets B, if I ( B I c A ) is less than some threshold a.

upper approximation of A

Then t

a (A) ,

over all Bl

- u I ( St c A ) B_ (?)
I

for which I ( B! c A ) _ o.

Similarly, we can define the

through (Bl) as

(_).- _ a ( s, f _ ) s, (8)

over all B! for which J ( B! # A ) _ a.
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rules:

given

The operators I and J will yield two posslble sets of

the certain rules and the possible rules. The data

for the Customer Service Centers (CSCs) will be

converted to fuzzy diagnosis of the attributes and we will be

able to extract fuzzy rules from the raw data. Each rule for

the decision to close a CSC will have some measure of belief

associated with it. The primary objective is to see to what

degree a combination of attributes is a subset of the decision

(certain rules) or intersects the decision (possible rules) to

close a customer service center. In addition, fuzzy terms

involved in the decision have a lower and an upper

approximation so that we have a measure of the minimum degree

to which the lower approximation implies the decision and the

minimum degree to which that decision satisfies the upper

approximation. The specific computations are in the

Application section.

It is important to realize that the present methodology

does not give any indication of the quality of the decision we

have. What is determined is how closely the decision maker

seems to depend on the values of the selected set of

attributes. If the decisions seem to follow consistently these

values and if we trust the decision maker, we then have

acquired knowledge, in terms of these attributes, as to how

decisions are made.

3. &pplication

Houston Lighting & Power Company is the largest
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Investor-owned electric utillty in the Southwest. HL&P is

responsible for generating and distributing electricity

throughout twelve counties surrounding Houston. Even though

it is a private company, its operations are regulated in Texas

by the Public Utillty Commission (PUC).

In November 1988, HL&P filed a request with the Public

Utillty Commission for a $432 million rate increase. The

public's perception of HL&P's stability and sound judgment in

the daily management of its operations was critical to the

outcome of the rate case. HL&P needed to show that its

decisions and operating procedures were initiated with total

consideration given to effectlvely serving its customers.

The Customer Relatlons Group within Houston Lighting &

Power was of primary interest to HL&P's case preparation since

it was responsible for all company activities that primarily

involved customer contact. Customer Relations Group employees

served as company liaisons to handle diverse customer

inquiries and requests in order to establish, monitor and

support continuous and reliable electric service.

The District Operations Division of Customer Relations

considered a plan for closing one customer service center. A

Customer Service Center (CSC) handled walk-ln customer trafflo

for payment of bills and general customer inquiries and was

the service portion of a district office. The company felt

that in order to reduce expenses in the event that the rate

request before the PUC was denledone or more CSCs would have
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to be closed. These customer service centers were operated for

the public's convenience and were not considered necessary for

the company's operation. Still, with the rate increase request

before the PUC, HL&P had to carefully analyze the CSC closing

decision. The main consideration for HL&P was the public's

reaction. Although a decision to close a site would

potentlally impact only a few customers, there might be those

who challenged the PUC rate hike request on the grounds of

paying more for less service.

HL&P investigated all relevant factors in making its

decision. The difference in relative operating expenses of

CSCs was negligible according to the company's operating and

maintenance budget. Therefore, operating cost could not be

regarded as a major consideration in the elimination of one of

the CSCs. Four factors could be considered in this decision:

the total number of customers in a district, the increase or

decrease in a district's population, the number of customers

utilizing the CSC in relation to the district's population,

and the distance that customers would have to travel to an

alternate CSC in the event their local CSC was closed. This

data is given in Table 1.
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TABLE i: Customer Service Center Data

• I

Customers in % Change in Usage/
District Customers Population

(Avg.)

Rerouting
Distance

(Miles)

Centers

Bayshore 38,510 5.1 4.64 15
Baytown 36,360 -1.4 21.5 15

Brazoria 20,689 3.4 14.07 20

Brazosport 21,976 .4 8.51 20

Cypress 44,074 8.3 1.87 17

Fort Bend 39,145 5.3 15.5 18

Galveston 31,263 - .i 36.44 20

Humble 55,911 1.0 12.44 15

Katy/Sealy 26,760 2.4 18.54 17

Wharton 8,707 - .74 39.43 18

_OTE: All of the above is based on 1985-1987 data.

Assuming that the total operating revenue generated by

each CSC would be the overriding decision factor for closing

a center, these authors attempted to determine how much a

decision made essentially by looking at the total operating

revenue would conform to the values associated with the four

attributes: Customers in District, Percent Change in

Customers, Usage/Population, and Reroutlng Distance. Based

upon the data, one of the authors served as a decision maker

in specifying a value indicative of a high number of customers

in the district and a low number in the district; a great and

a small percent change in usage; a high and a low percentage

of customers utillzlng the center; and a large and small

reroutlng distance. A high number of customers was 60,000 and

a low number of customers was 5000. A great percent change was
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± 9.00 and a small percent change was ± 0.1. A high usage

population ratio was 40.00 percent and a low usage was 1.00

percent. A large rerouting distance was 20 miles and a small

distance was 10 miles. The degree to which each site satisfied

the definition of high, low; great, small; high, low; and

large, small is given by the ratios of the actual data and the

defined values. (See Table 2)

TABLE 2: Values for Fuzzy Sets of Conditions

Customers in

District

HIGH LOW

% Change in Usage/ Reroutlng
Customers Population Distance

GREAT SMALL HIGH LOW LARGE SMALL

Centers

Bayshore .640 .130 .567 .020

Baytown .606 .138 .156 .071
Srazoria .345 .242 .378 .029

Brazosport .366 .228 .044 .250

Cypress .735 .113 .922 .012
Fort Bend .652 .128 .589 .019

Galveston .521 .160 .011 1.000

Humble .932 .089 .111 .100

Katy/Sealy .446 .187 .267 .042
Wharton .145 .574 .082 .135

.116 .216

.538 .047

.352 .071

.213 .118

.047 .535

.388 .065

.911 .027

.311 .080

.464 .054

.986 .025

.75 .667

.75 .667
1.00 .500
1.00 .500

.85 .588
• 90 .556

1.00 .500

.75 .667

.85 .588

.90 .556

The total operating revenue generated for each service

center was to be used to determine whether or not a center

should be closed. The decision maker determined that if

revenue was less that 1% of the total generated from all

centers, the CSC would be closed. Conversely, the center would

not be closed if revenue exceeded 10% of the total. The raw
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data and the reflectlve valuation of each center for closing

and not closing are given in Table 3.

TABLE 3: Revenue of each CSC & Closlng Weight

Total Revenue Close Do Not Close

(Dollars)

Centers

Bayshore 270,411,636 .039 1.000

Baytown 142,262,298 .075 1.000
Brazorla 44,464,243 .239 .419

Brazosport 144,290,786 .074 1.000

Cypress 92,178,304 .115 .869

Fort Bend 88,498,221 .120 .834

Galveston 89,125,871 .119 .840

Humble 120,219,083 .088 1.000

Katy/Sealy 53,675,510 .198 .506
Wharton 15,660,308 .677 .148

1,060,786,260

Of cours e , no one at HL&P would speclflcally state

exactly how the decision to close a CSC would be determined.

Since most businesses define profitability in terms of revenue

generated and since HL&P representatives had obtained this

information, we have assumed that the total operating revenue

would be the major factor affecting the decision to close a

CSC. In reality, many factors, some of them even unknown to

the decision maker himself, may go into the decision of

closing a Customer Service Center. However, we are interested

in learning by examples how much the decision can be

attributed to the attributes for which HL&P had accumulated

data for each CSC.
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Example I

In the first example we selected two attrlbutes:

Usage/Population and Rerouting Distance.

First, we let x i denote the customer service centers, such

that x I = Bayshore, x2 = Baytown,..., x10 = Wharton. Then D, =

Close the CSC, and Di = Do Not Close the CSC. The decision to

close the facility can be evaluated as:

DA = .039/X I + .075/x2 + .239/x3 + .074/X 4 + .I15/_ + .120/x6

+ .ll9/X T + .088/X 8 + •198/X 9 + .677/X10

This indicates that based upon revenue generated, Wharton is

a falrly good example of a CSC to be closed, while Bayshore is

not a good example of D,•

Likewise, we can indicate the degree of membership of

each CSC for each fuzzy-defined condition/attribute; High (H)

Usage/Population, Low (L) Usage/Population, Large (G)

Rerouting Distance, and Small (S) Rerouting Distance. Thus, we

define the following fuzzy sets:

H _, .l16/X 1 + .538/x 2 + .352/X 3 + .213/X 4 + .047/X 5 + .38S/x 6 + •

• 911/x 7 + .311/x s + •464/x 9 + •986/Xio

L - •216/x I + •047/x 2 + .071/x s +.I:ZS/x 4 + •535/_ +•065/x 6 +

.027/x_ + .o80/x a + .054/x 9 + .025/x_o

G - .75/x_ + .75/x z + 1.001x_ + 1•O0/x 4 + .85/x s + .90/x 6 +

I. O0/x., + . 75/x s + . 85/x 9 + •90/x_o

S -" •667/X I + •667/x_ + .50/:x 3 + .50/X 4 + .558/x s + .556/X 6 +

• 50/x 7 + .667/x a + .588/X 9 + .556/Xi0

We compute the minimum degree to which possible
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combinations of condltlons/attrlbutes are related to decision

DA. Thus,

I ( H c DA ) = .119

I ( DA ) - .465

I ( G c DA ) = .074

I ( S c DA ) = .333

I ( H n G c _ ) = .119

I ( H n S c DA ) = .462

I ( L n G c DA ) = .465

I ( L n S c DA ) = .465

With a threshold of u - 0.40, the rules for closing a CSC are:

1. If usage/population percentage is low (i.e. 1% or less of

the customers in the district utilizing the CSC), then the

CSC should be closed. (D, is present .465 or Belief - .465)

2. If the usage/populatlon percent is high (approximately 40%

of the customers in the district utilize the CSC) and the

rerouting distance is small (approximately 10 miles), then

the CSC should be closed. (Belief - .462)

3. If the usage/population percent is low and the rerouting

distance is high (20 miles), then the CSC should be closed.

(Belief = .465)

4. If the usage/population is low and the rerouting distance

is low, the CSC should be closed. (Belief - .465)

Since no new information is provided by rules 3 and 4,

the extracted rules for closing are:

i. If usage/populatlon percentage is low then the CSC should

be closed. [The belief is .465.]

2. If usage/populatlon is high and the reroutlng distance is

small then the CSC should be closed. [The bellef is .462.]

Rule 1 is certainly reasonable. Rule 2 sounds less reasonable.
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It is generated by the decision maker deciding fairly strongly

in favor of Wharton to be closed, although its

usage/population was definitely high and its rerouting

distance was over .5 small. From such examples, we learn that

for high usage and relatively low reroutlng distance a CSC can

be closed. Note that from the data, we do not feel that

strongly about these rules. The extracted rules would not be

sufficient to infer closlng from past experience.

We now measure the degree to which the fuzzy sets

intersect _ as:

J ( . # _ ) - .677 J ( s n u # DA ) - .67_

J ( L I _ ) = .115 J ( H n S i D, ) = .556

J ( G # _ ) - .677 J ( L n G # D, ) - .115

J ( S # _ ) = .556 J ( L n S # D, ) = .115

With u = 0.60, the acceptable rules are:

5. If usage/population percent is high, then closing is

possible .667.

6. If rerouting distance is great, then closing is possible

.677.

7. If usage/population is high and rerouting distance is

great, then closing is possible .677.

The extracted rule would beRule 7. The posslbillty of closing

if usage/populatlon is high and rerouting distance is great

can't be discounted. Brazorla was recommended to be closed

with strength .239 versus not closing with strength .419.

Nevertheless, the rerouting distance was definitely high and
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the usage/populatlon was rated .352 high versus .071 low.

We determine the lower approximation of DA, using

a =.40, as:

R (DA) = .465 L u .465 (L n G) u .465 (L n S) u .462 (H n S}

= .465 L u .462 (H N S)

Note that this result shows Rule 3 and Rule 4 to be

superfluous to Rule 1 and unnecessary for the calculatlon of

R (D,).

We can also show that Rules 5 & 6 should not be accepted

since the upper approximation of D, for = = .60, results in

Rule 7 :

R (D,) - .677 H u .677 S u .677 (H rl G)

•- .677 H u .677 G

It can be observed that R (DA) ¢ R (D,). Therefore,

R (D,} and R (DA) would be the "lower and upper approximations"

to the set of closed CSCs. Note that R (DA) and R (D,) are

both expressed in terms of attributes but DA is not. We can

compute I [R (D,) c DA ] - .751 and I [DA c R (DA)] -- .667 to

show that a relatlvely strong containment exists for both the

lower and upper approximation of the decision to close a

Customer Service Center.

Although, Rule 1 appears to be the most logical rule to

accept, it eliminates Wharton as the primary candidate for

closlng. It shoul_ be noted that Wharton'g valuatlve scores

based on high customer utillzatlon (.986) and relatlvol¥ largo

as well as relatively small reroutlng values (.90 and .556,
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respectively) are influencing the second and third decision

rules. This example is an excellent illustration of the

necessity for the attributes to properly reflect the decision

criteria. In this example, the decision to close a center was

to be based solely on revenue generated. This means that HL&P

would select a center which generated the lowest revenue as

that to be closed and the one which generated the highest

revenue becomes that least likely to be closed. This suggests

that Wharton is our best site to close. However, the

usage/population percentage at Wharton is high leading one to

the conclusion that, in general, those centers with high

customer usage should be closed.

Bxample Z

A second example is given to show that a closer

relationship between the decision an_ the attributes selected

will lead to seemingly more logical rules being determined.

For this illustration, we used the size of the customer base

with the percent usage which suggests that although the

percent usage may be high, there may be many fewer customers

at the center generating much less revenue and thus being

candidates for closing.

Using the values of the fuzzy sets High (NH) and Low

(NL) for the number of customers, and High (UH) and Low (UL)

for the usage/populatlon percentages given in Table 2:



I ( NH c D, ) - .088

I ( NL c D, ) - .677

I ( UH c D, ) - .119

I ( UL c D, ) = .465

I ( NH O UH c D, ) - .463

z ( NH n UL c D, ) - .465

I ( NL o UH c D, ) = .677

I ( NL n UL c D, ) = .87

With u - .60, the following rules would be determined:

1. If the number of customers is low, the bellef that the CSC

should be closed is .677.

2. If the number of customers is low and the usage/population

is low, the CSC should be closed .87.

3. If the number of customers is low and the usage/populatlon

is high, the CSC should be closed .677.

Rule 3 is redundant and we would keep Rules 1 and 2.

Also using u = .60, we can determine the following rules

from:

u ( _-_ # VA ) - .239

J ( NL # D, ) - .574

J ( UH # D, ) - .677

J ( UL # D, ) - .116

j ( _m o UH # D, ) - .239

J ( NH O UL # D, ) - .115

j ( m_oml # D, ) - .574

J ( NL 0 UL # D, ) - .113

4. If the number of customers In the district is low, closing

is possible .574.

5. If the usage/population is high, closing is posslble .677.

6. If the number of customers in the district Is low and the

usage/populatlon is high, closlng Is posslble .574.

From these rules, we select Rule 5.

Computing the upper and lower approximations based on
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U = .60, we have:

E (D,) = .677 NL u .87 ( NL n UL) u .677 (NL n UH) and

R (D,) = .677 UH such that:

I [ _ (D,) c _ ] = .677 and I [ _ c R (_) ] = .667

Again, these values indicate a relatively strong containment

of the lower and upper approximation of the decision to close

a CSC.

Thus, the acceptable rules where Rule 1 and Rule 2 come

from certainty and Rule 3 come from possibility are:

1. If the number of customers is low and usage/populatlon is

low, the CSC should be closed. [ Belief is .87.]

2. If the number of customers is low, the CSC should be

closed. [Belief is .677.]

3. If the usage/population is high, the CSC can be closed.

[Plausibility is .677.]

If strictly ordering the CSCs to be closed based upon

Rule 2, Wharton would be the decision maker's first choice for

closing (followed by Brazoria and Brazosport). Although Rule

3 appears to be illogical, if strictly ordering a center to be

closed based upon this rule, Wharton would be selected

(followed byGalveston and Baytown). If using the more logical

Rule 1, Wharton would not be considered first. Brazoria,

ranking second in having the lowest number of customers and

fifth in having a low usage/populatlon ratio would be one

possible choice for a CSC to be closed. Brazosport with the

third lowest number of customers and the third lowest

21



usage/population ratio would also be a good choice for

closure. Notice that these were the second choices if strictly

ordering by Rule 2, based upon the number of customers in the

district. Since the number of customers in the district would

directly relate to the revenue generating power of a CSC, this

example provides a more realistic result _nd supports the need

to have well chosen attributes, reflecting the decisions made.

4. Contribution

One of the advantages of this process is that the

decision maker does not have to specify arbitrarily determined

or palrwise-comparlson determined relatlve importance weights

for each attribute or condition, or subjectively evaluate each

alternatlve according to these attributes as would be

necessary using a weighted scoring approach. Our process

allows the user to learn and determine rules based on the

examples available. Of course, the quality of the learning

depends on how relevant are the chosen attributes to the

decision to be made.

The process allows rules to be determined through

incorporation of raw data for each condition or attribute over

all available alternatives for which a decision must be made.

The decision maker assigns values he considers to be high,

low, great, small, etc. based on the given data. The DM's

values for high, low, etc. are translated Into the degree to

which each combination of alternatives is a member of the

fuzzy set defined by the decision maker. The procedure can
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also determine a value for medium size. The decision maker can

specify a value he considers to be medium and we can calculate

the degree of membership of each alternative in the fuzzy set

"Medium" by interpolating between the values of the fuzzy

sets, Large and Small. For example, if the decision maker

specifies 40,000 customers as a Medium amount of customers in

the district, we can interpolate between the degree of

membership of Bayshore in the fuzzy set High (.640) and in the

fuzzy set Low (.130); where High was defined as 60,000

customers and Low was 5000 customers. Thus, the degree of

membership of Bayshore in the fuzzy set Medium is .455.

similarly, Relatively High can be defined as 55,000 customers

in the district and the degree of membership of Bayshore in

the fuzzy set Relatively High is .594. Through such an

interpolation process all possible fuzzy sets between High and

LOw, Large and Small, etc. can be determined.

Ranges of values can be specified as we did for the

decision to close a customer service center. In the example,

the decision to close a center was primarily based on total

operating revenue generated by each CSC. The decision maker

specified a dollar amount at or below whlchthe CSC should be

closed, and another at or above which the CSC should not be

closed. Values at or below some lower bound have zero

membership in the fuzzy set, and those at or above the upper

bound have total membership (1.00) in the fuzzy set.

Importantly, the process can actually be initiated
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without the DM's Judgment if we use the highest value and the

lowest value, the largest and smallest, etc. as those given in

the raw data file for the specific conditions the decision

maker wants to consider. This can be extended if a value for

medium size is defined to be some convex combination of the

ratios determined using the largest and smallest data values.

It can also be extended to the decision membership set,

although some range would have to be defined for the lower and

upper bound.

5. Conclusion

The rough sets formulation that forms the basis for

determining the decision rules is easily performed through

maximization and minimization of combinations oft he fuzzy set

values. The process is not computationally intensive, although

it does become more labor intensive beyond the two attribute

with one decision case presented in this paper. The authors

hope to have a computer program available in the near future

to handle large-scaleproblems.

The methodology described in previous sections extends

to many problems and need not be limited to the problem of

closing customer service centers. In our setting, the decision

maker is faced with uncertain (i.e. fuzzy) conditions and

makes fuzzy decisions which might be strongly or weakly based

on the conditions. Fuzzy rules are extracted, such rules are

naturally present in descriptions, crisp rules are the

exceptions. Also, fewer fuzzy rules are needed than crisp

24



rules to build an expert system. Since the crisp set is a

limiting case of the fuzzy setting, expected benefits that

arise from our fuzzy set based method are a more realistic and

general approach to knowledge acquisition. Acquisition of

knowledge through examples, which is particularly of interest

when the decision maker is unable to articulate how he arrives

at a decision, is a very natural approach to learning.

Again, we stress that the proposed method does not give

an answer to: "are the decisions made, good decisions?". It is

assumed that the expert is knowledgeable about the conditions

under which the decision will be made. Our methodology gives

an answer to "how closely does the expert follow the

attributes under consideration in making his decision?". If

the decisions seem to closely follow the values of the

attributes, then strong rules can be acquired through examples

and the expert's knowledge can be put into machine

representable form.

At this time, HL&P has not made a decision to close

either of the customer service centers. Management has relied

on reducing the operating costs at each of the centers by

moving to the company's downtown Houston location, the CSC

employees who generally dealt with telephone contact with

district customers. A complete evaluation of the data from

Tables i, 2, and 3 is to be performed and submltted to HL&P as

soon as the prototype computer program is completed.

Although relatively small, the two examples presented in
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this paper are realistic and illustrate the underlying rough

set theory. Through the examples, we can see how the process

presented will generate a decision making rule based upon a

minimal amount of subjective judgment by the decision maker.

Indeed, the decision maker has merely to indicate that the

maximum, minimum, or a range of actual values are to be used

and the process will generate rules relatlng the attributes to

the selected decision criteria. Importantly, however, the two

examples show that the DM must choose carefully the attributes

upon which he will make the decision.
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